Key Stage 3:Year 7 Curriculum- Key content Terms 3 and 4

Design Technology Skills	Project Skills	Equipment & Materials		
 Resilience Perseverance Independence Team Work Health & Safety Planning Cooking Preparation Making Critique Quality Control Evaluating Sensory Analysis 	 Cooking Measuring Weighing Temperature control Bridge Grip Claw Grip Claw Grip Hygiene Grating Baking Frying Grilling Cutting Rubbing in method 	 Cooker Hob Grill Oven Vegetable knife Frying pan Utensils Chopping boards Scales Sieve Measuring jug Teaspoon Whisk 		

Desk Organiser

Design Technology Skills	Project Skills	Equipment & Materials	
 Resilience Perseverance Independence Health & Safety Designing Modelling Making Critique Quality Control Evaluating 	 Measuring Marking out Cutting Assembling/making Half lap joint Drilling Shaping Moulding Isometric design Iterative design 	 Tenon Saw Pillar drill Junior hacksaw Belt sander Bench hook Jigs Line bender Acrylic Softwood Glass paper 	

Design Technology Skills Project Skills Equipment & Materials Resilience CAD Laser cutter • • • Perseverance CAM Sewing machine • Independence **Sublimation Printer** 2D Design • • • Team Work Mind mapping Heat press • • ۲ Threading Needle Health & Safety • • • Research Machine Sewing Bobbin • • • Designing **Driving Test** Thread • • • Modelling Resist Dyeing (Tie-dye) Pins • • • Making Heat Transfer Printing Fabric Shears • • Critique **Pattern Cutting** Cotton (Natural Fibres) • • • **Quality Control Economical Lay Plan** Polyester (Synthetic Fibres) • • • Plain Seam Plywood Evaluating • • Hems • Seam Allowance .

Branding

Designer Lantern

Design Technology Skills	Project Skills	Equipment & Materials		
 Resilience Perseverance Independence Team Work Health & Safety Research Designing Modelling Making Critique Quality Control Evaluating Iterative design Isometric drawing Design movements 	 Electronics Soldering Circuits Sewable circuit CAD Machine Sewing Sublimation Printing Measuring Marking out Cutting Assembling/making Half lap joint Mitre joint Dowel joint 	 Tenon Saw Pillar drill Mitre saw Solder Soldering iron Needle Conductive thread Battery cell holder LED Sewing machine Sublimation Printer Heat press Vilene (bonded fabric) Softwood Hardwood 		

Key Terms				
Term	Definition			
Population	total number of people			
Population distribution	Where the population are spread out			
Population density	How many people live per square km			
Sparsely populated	Not many people living per square km			
Densely populated	Many people living per square km			
Life expectancy	How long someone is expected to live in a specified country			
Population growth rate	The amount a population has increased by in a year (expressed as a percentage)			

How Physical features affect population growth

Feature	How it impacts	Expected population
Mountain	Difficult to build on and travel to/from	Low density
Rivers	Can flood Provide water Often flat ground either side good for building and farming	Often high density but high risk unless river managed
Forest	Useful building materials available Density of trees makes building difficult	Low density unless deforestation occurs
Climate	Too hot – difficult to live and water supply issues Too cold – difficult to live	Low density expected
Coastal	Great for trade, tourism and fishing	High density

eography

Coping with an ageing population

The UK government needs to be prepared and be ready for:

- An increased need for housing, transport, medical care, pensions, care workers and leisure activities for elderly people Older people also provide an important contribution to
- -Voluntary work

Ethiopia (LIDC) in 2050

-But look at the high % aged under 15.

-With so many young people, many may

find it hard to get work when they grow

Ethiopia will have a very young

still be low by 2050

population.

up.

- The economy ' the grey pound' -
- The democracy 'the grey vote'

UK's Population

Population and Urbanisation

Life expectancy and resource reliance

As we live longer we need more resources which puts pressure on the planet.

- The more food we need to feed us the more land is cleared for farming, the more minerals are dug up to make fertilisers
- The more homes we need (huts, flats, houses) the more land is cleared for homes. Timber, stone, clay and sand is used up
- The more fuel we need (oil, coal, gas, petrol, electricity, firewood) the more trees are gone which means more land is cleared for oil and gas wells, coal mines and power stations

Future Population issues globally

Germany (AC) in 2050

-Life expectancy is rising in Ethiopia. Even -There will be more people aged over 65 so, the % of people aged 66 and over will than under 15. So this is an ageing population

> -People of working age will have many elderly people to support

-The % of young people is low. When they grow up, there won't be enough of them to do all the work

-So Germany will need immigrants from other countries

What is urbanisation? The process of cities getting bigger by people moving in to them

How cities grew

Small farming settlements began, people sold produce to market towns grew. The industrial revolution meant people lived near to factories that they worked in. This is now happening fast in Africa and Asia.

Urbanisation around the world c

- Africa has the lowest % urbanisation
- In Brazil 80% of people live in urban areas
- In Nepal less than 20% of the live in urban areas
- In Saudi Arabia, more than 80% live in urban areas
- Urbanisation is increasing and set to continue
- By 2050, 2/3rd s will live in urban areas globally Governments like to know their percentages so they can plan services accordingly

Why people migrate

Migration to LIDC cities generates slums

These are often found: on hillsides. by main roads, by railways, under fly overs, close to the CBD, on flood plains, on rubbish tips or derelict land

Future cities should be sustainable like Masdar

They need to be able to : - Cope with changing climate, manage transport, get resources, water, dispose of waste, provide leisure areas, have accommodation, produce food, produce energy - all without impacting at all on the air, water, land around it. Is it possible?

Reproduction

Keyword	Definition		
Egg Cell	The female sex cell (gamete)		
Sperm Cell	The male sex cell (gamete)		
Fertilisation	The fusing of the male and female sex cells.		
Ovary	The female reproductive organ that releases egg cells.		
Testes	The male reproductive organs which produce sperm cells.		
Embryo	Tiny new human life which grows by cell division from a fertilised egg cell.		
Gestation	The period between fertilisation and birth, also known as 'pregnancy'		
Placenta	The organ that allows substances (such as oxygen) to pass between the mothers blood and baby's blood.		
Amniotic Fluid	A fluid which surrounds the foetus and helps to cushion it.		
Foetus	The unborn baby after around 8 weeks of pregnancy.		
Menstruation	Where the lining of the uterus breaks down every month if the egg is not fertilised. Also known as the period.		
Sexual Reproduction	Producing new organisms by the joining of two sex cells.		
Asexual Reproduction	Producing new organisms from only one parent.		

Further Reading:

https://www.bbc.com/bitesize/guides/z9fgr82/revision/1

Science

The Male Reproductive System

The testes produce millions of make gametes (sex cells) called sperm. The sperm pass through sperm ducts, and mix with fluids produce by the glands. The penis passes urine and semen out of the males body. The urethra is the tube which carries the urine or semen.

The Female Reproductive System

The two ovaries contain hundreds of undeveloped female gametes. These are called ova (one is called an ovum). Women have these cells in their body from birth.

Each ovary is connected to the uterus by an oviduct, sometimes known as the fallopian tube. Every month, an egg develops, becomes mature and is released from an ovary.

The uterus is where a baby develops until its birth.

- The cervix is a ring of muscle at the lower end of the uterus. It keeps the baby in place while the woman is pregnant.
- The vagina is a muscular tube that leads from the cervix to the outside of the woman's body.

Fertilisation

Fertilisation is when a sperm cell and ovum fuse. Sperm cells are released into the female reproductive system during sexual intercourse (ejaculation). Only one sperm cell breaks through the cell membrane and enters the ovum.

The Menstrual Cycle

The menstrual cycle prepares the female body for pregnancy by causing eggs (ova) to mature and be released. The process lasts for 28 days.

Foetus Development & Placenta

The foetus relies upon its mother as it develops.

- Protection against knocks and bumps.
- Oxygen
- Nutrients (food & Water)

The placenta is an organ responsible for providing oxygen and nutrients, and removing waste substances. It grows into the wall of the uterus and is joined by the foetus by the umbilical cord.

- Oxygen and nutrients diffuse from mother to foetus.
- Carbon dioxide and other waste substances diffuse across the placenta from foetus to mother.

Chemical Reactions

Keyword	Definition		
Endothermic	Reactions that take in heat		
Exothermic	Reactions that give out heat		
Oxidation	Reaction of other elements with oxygen		
Combustion	Burning fuel in oxygen		
Thermal Decomposition	When a substance is broken down into 2 or more products by heat		
Reactivity series	List of metals in order of reactivity		
Displacement	A more reactive metal will displace a less reactive metal from its compound		
Catalyst	A substance that increases the rate of a reaction but is not itself used up.		
Polymer	Long chain molecules made up of many monomers.		
Fuel	Contain hydrocarbons – compounds containing hydrogen and carbon atoms only.		
Activation Energy	The minimum amount of energy that colliding particles must have for them to react		

Endothermic Reactions

In an endothermic reaction, thermal energy is taken in from the surroundings, therefore there is a temperature decrease. Thermal decomposition is an example.

Exothermic Reactions

In an exothermic reaction, thermal energy is given out to the surroundings, therefore there is a temperature increase. Combustion, oxidation and neutralisation reactions are all examples.

Combustion

Combustion is another name for burning. It is an example of an exothermic reaction. There are two types of combustion – complete combustion and incomplete combustion.

Complete Combustion

Coal, oil and gas are furls. They contain hydrocarbons (compounds of hydrogen and carbon atoms only). When these fuels burn, it reacts with oxygen in the air to produce carbon dioxide and water vapour.

Fuel + Oxygen \rightarrow Carbon Dioxide + Water

Incomplete Combustion

If there is not enough oxygen in the air for complete combustion, incomplete combustion will happen instead.

This time either carbon monoxide is produced (a toxic gas which can lead to death) or carbon is produced (appears as soot and smoke which can cause breathing problems).

Fuel + Oxygen \rightarrow Carbon Monoxide + Water

Fuel + Oxygen → Carbon + Water

Oxidation Reactions

In an oxidation reaction, a substance gains oxygen. Metals and non-metals can take part in oxidation reactions.

Metals react with oxygen in the air to produce metal oxides. For example, copper reacts with oxygen to produce copper oxide when it is heated in the air.

Copper + Oxygen → Copper Oxide 2Cu + O_2 → 2CuO

Thermal Decomposition

Some compounds break down when heated, forming two or more products from one reactants.

Many metal carbonates can break down easily when it is heated: Copper Carbonate \rightarrow Copper Oxide + Carbon Dioxide

Copper carbonate is green, copper oxide is black. We can test for carbon dioxide using limewater. Limewater is colourless, but turns cloudy when carbon dioxide is bubbled through it.

Reactivity Series

Some metals are very unreactive. This means they don't take part in chemical reactions. For example platinum. Some metals are very reactive and they take part in chemical reactions easily to form new substances.

Displacement Reactions

Displacement reactions involve a metal and a compound of a different metal. In displacement reactions, a more reactive metal will displace a less reactive metal from its compound.

Magnesium + Copper Sulfate → Magnesium Sulfate + Copper

Magnesium is more reactive than copper, so it displaces (pushes out) the copper within the compound.

https://www.bbc.com/bitesize/guides/zqd2mp3/revision/5 https://www.bbc.com/bitesize/guides/zqd2mp3/revision/6

Further Reading:

Catalysts

A catalyst is a substance that:

- Speeds up the rate of a chemical reaction
- Does not alter the products of the reaction

https://www.bbc.com/bitesize/articles/zcwxcj6

• Is unchanged chemically and in mass at the end of the reaction.

https://www.bbc.com/bitesize/guides/zqd2mp3/revision/3

Catalysts provide an alternative reaction pathway that has a lower activation energy than the uncatalysed reaction.

Energy

0		
0		L
-		

Keyword	Definition	Type of energy	Description	Type of energy	Description	Calculating Kinetic Energy	
Energy Transfer Conservation of Energy	Changes from one form of energy to another form of energy. Energy cannot be created or destroyed It can be stored, dissipated or transferred from one form into another.	Kinetic	The energy in moving objects	Thermal (Internal)	The heat stored in an object	$E_{K} = \frac{1}{2}mv^{2}$	
Internal Energy Kinetic Energy	Energy stored in all materials, including energy due to the motion of particles and the forces between them. Energy which an object possesses by being in motion	Chemical	When a substance undergoes a chemical reaction	Gravitational potential	When an object is raised to a height	$E_{K} = Kinetic Energy$ m = Mass v = velocity	
Elastic Potential Energy	Energy stored in squashed, stretched or twisted materials.	Magnetic	When 2 objects	Electrostatic	Allows an electric	Calculating GPE GPE = mass x gravitational field strength x height	
Gravitational Potential Energy	The energy stored by an object lifted up against the force of gravity. Also known as GPE.				current to now	 Mass is measured in kilograms (kg). Gravitational field strength is measured in newtons per kilogram (N/kg), usually taken as 10N/kg on Earth. 	
Thermal Energy Store	Energy store filled when an object is warmed up.	Elastic potential	When an object is stretched or	Nuclear	Energy stored in an atom(not	 Height is measured in metres (m). GPE is measured in joules (j). 	
Work done	Work is done when a force makes an object move a distance, energy is transferred	1 of	squashed	Sound	needed till GCSE)	Calculating Power	
Power	The rate of work done. Or The energy transferred per second.		object (not stored)	Sound	object (not stored)	Word Equation Power = Work Done Time Taken	
Fossil Fuel	Natural, finite fuel formed from the remains of living organisms, e.g. oil, coal and natural gas.		Dimensi		Dimensions P = W / t		
Non-Renewable	A resource that cannot be replaced when it is used up, such as natural gas or cold.					Units Watt = Joule / second	
Renewable	An energy resource that will not run out, e.g. solar energy and wind energy	Calculating Efficiency			Denowable Eng	Non Ponowohlo Energy	
https://www.bbc.c https://www.bbc.c https://www.bbc.c	om/bitesize/guides/z99jq6f/revision/1 om/bitesize/guides/zggk87h/revision/1 om/bitesize/guides/zp8jtv4/revision/1	Efficiency = useful energy out total energy in X 100					
		Efficiency = 90 ÷ 100 x 100 Process Efficiency = 90% Energy input Electrical energy 100J Electric lamp			Coal Coal De Fais of Lie Nachar Nachar		